
Week 11 - Wednesday

 What did we talk about last time?
 Binary files
 Started low-level I/O

The key to performance is elegance, not battalions of
special cases. The terrible temptation to tweak should be
resisted unless the payoff is really noticeable.

Jon Bently and M. Douglas McIlroy
Computer Scientists at Bell Labs

 To use low level I/O functions, include headers as follows:
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

 You won't need all of these for every program, but you might
as well throw them all in

 To open a file for reading or writing, use the open() function
 There used to be a creat() function that was used to create new

files, but it's now obsolete
 The open() function takes the file name, an int for mode,

and an (optional) int for permissions
 It returns a file descriptor

int fd = open("input.dat", O_RDONLY);

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
read(fd, buffer, sizeof(int)*100);

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY);
int buffer[100];
int i = 0;
for(i = 0; i < 100; i++)

buffer[i] = i + 1;
write(fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Like always, it's a good idea to close files when you're done

with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close(fd);

 Use low level I/O to write a hex dump program
 Print out the bytes in a program, 16 at a time, in hex, along

with the current offset in the file, also in hex
 Sample output:

0x000000 : 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
0x000010 : 02 00 03 00 01 00 00 00 c0 83 04 08 34 00 00 00
0x000020 : e8 23 00 00 00 00 00 00 34 00 20 00 06 00 28 00
0x000030 : 1d 00 1a 00 06 00 00 00 34 00 00 00 34 80 04 08

 A file descriptor is not necessarily unique
 Not even in the same process

 It's possible to duplicate file descriptors
 Thus, the output to one file descriptor also goes to the other
 Input is similar

 stderr usually prints to the screen, even if stdout is being
redirected to a file

 What if you want stderr to get printed to that file as well?

 You can also redirect only stderr to a file

./program > output.txt

./program > output.txt 2>&1

./program 2> errors.log

 If you want a new file descriptor number that refers to an open file
descriptor, you can use the dup() function

 It's often useful to change an existing file descriptor to refer to
another stream, which you can do with dup2()

 Now all writes to stderrwill go to stdout

int fd = dup(1); // Makes a copy of stdout

dup2(1, 2);
// Makes 2 (stderr) a copy of 1 (stdout)

 Reading from and writing to files on a hard drive is expensive
 These operations are buffered so that one big read or write

happens instead of lots of little ones
 If another program is reading from a file you've written to, it reads

from the buffer, not the old file
 Even so, it is more efficient for your code to write larger

amounts of data in one pass
 Each system call has overhead

 To avoid having too many system calls, stdio uses this
second kind of buffering
 This is an advantage of stdio functions rather than using low-level
read() and write() directly

 The default buffer size is 8192 bytes
 The setvbuf(), setbuf(), and setbuffer() functions

let you specify your own buffer

 stdio output buffers are generally flushed (sent to the
system) when they hit a newline ('\n') or get full
 When debugging code that can crash, make sure you put a newline in

your printf(), otherwise you might not see the output before the
crash

 There is an fflush() function that can flush stdio buffers

fflush(stdout); // Flushes stdout
// Could be any FILE*
fflush(NULL); // Flushes all buffers

 You can build layers of I/O on top of other layers
 printf() is built on top of low level write() call

 The standard networking model is called the Open Systems
Interconnection Reference Model
 Also called the OSI model
 Or the 7 layer model

 There are many different
communication protocols

 The OSI reference model is an
idealized model of how different
parts of communication can be
abstracted into 7 layers

 Imagine that each layer is
talking to another parallel layer
called a peer on another
computer

 Only the physical layer is a real
connection between the two

Application

Presentation

Session

Transport

Network

Data Link

Physical

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems

Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption Unicode

5 Session Salty Sessions, sequencing, recovery TLS

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames,
transmission error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 There is where the rubber meets the road
 The actual protocols for exchanging bits as electronic signals

happen at the physical layer
 At this level are things like RJ45 jacks and rules for

interpreting voltages sent over copper
 Or light pulses over fiber

 Ethernet is the most widely used example of the data layer
 Machines at this layer are identified by a 48-bit Media Access

Control (MAC) address
 The Address Resolution Protocol (ARP) can be used for one

machine to ask another for its MAC address
 Try the arptables command in Linux

 Some routers allow a MAC address to be spoofed, but MAC
addresses are intended to be unique and unchanging for a
particular piece of hardware

 The most common network layer protocol is Internet Protocol
(IP)

 Each computer connected to the Internet should have a
unique IP address
 IPv4 is 32 bits written as four numbers from 0 – 255, separated by

dots
 IPv6 is 128 bits written as 8 groups of 4 hexadecimal digits

 We can use traceroute to see the path of hosts leading to
some IP address

 There are two popular possibilities for the transport layer
 Transmission Control Protocol (TCP) provides reliability
 Sequence numbers for out of order packets
 Retransmission for packets that never arrive

 User Datagram Protocol (UDP) is simpler
 Packets can arrive out of order or never show up
 Many online games use UDP because speed is more important

 This layer isn't a key part of the TCP/IP model
 The secure sessions provided by TLS can be considered the

session layer

 The presentation layer is often optional
 It specifies how the data should appear
 This layer is responsible for character encoding (ASCII, UTF-8,

etc.)
 MIME types are sometimes considered presentation layer

issues
 Encryption and decryption can happen here

 This is where the data is interpreted and used
 HTTP is an example of an application layer protocol
 A web browser takes the information delivered via HTTP and

renders it
 Code you write deals a great deal with the application layer

 The goal of the OSI model is to make lower layers transparent to upper ones

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

MAC IP UDP Payload

IP UDP Payload

UDP Payload

Payload

Payload

Payload

 Seven layers is a lot to remember
 Mnemonics have been developed to help

Application All All A Away

Presentation Pros People Powered-Down Pretzels

Session Search Seem System Salty

Transport Top To Transmits Throw

Network Notch Need No Not

Data Link Donut Data Data Dare

Physical Places Processing Packets Programmers

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as five layers:

Layer Action Responsibilities Protocols

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to segments Sequencing, reliability, error correction TCP or UDP

Internet Convert segments to packets Flow control, routing IP

Link Convert packets to frames
Point-to-point communication between
devices on the same network

Ethernet, Wi-Fi

Physical Transmit frames as bits Data communication

 More networking
 Sockets

 Work on Project 5
 Keep reading LPI chapters 13, 14, and 15

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Low Level File I/O
	Includes
	open()
	read()
	write()
	close()
	Example
	File descriptors revisited
	Duplicating descriptors on the command line
	dup() and dup2()
	I/O buffering in files
	Buffering in stdio
	Flushing a buffer
	Networking
	OSI seven layer model
	Protocols
	Layers
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer
	Presentation layer
	Application layer
	Transparency
	Mnemonics
	TCP/IP
	Upcoming
	Next time…
	Reminders

