
Week 11 - Wednesday

 What did we talk about last time?
 Binary files
 Started low-level I/O

The key to performance is elegance, not battalions of
special cases. The terrible temptation to tweak should be
resisted unless the payoff is really noticeable.

Jon Bently and M. Douglas McIlroy
Computer Scientists at Bell Labs

 To use low level I/O functions, include headers as follows:
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

 You won't need all of these for every program, but you might
as well throw them all in

 To open a file for reading or writing, use the open() function
 There used to be a creat() function that was used to create new

files, but it's now obsolete
 The open() function takes the file name, an int for mode,

and an (optional) int for permissions
 It returns a file descriptor

int fd = open("input.dat", O_RDONLY);

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
read(fd, buffer, sizeof(int)*100);

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY);
int buffer[100];
int i = 0;
for(i = 0; i < 100; i++)

buffer[i] = i + 1;
write(fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Like always, it's a good idea to close files when you're done

with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close(fd);

 Use low level I/O to write a hex dump program
 Print out the bytes in a program, 16 at a time, in hex, along

with the current offset in the file, also in hex
 Sample output:

0x000000 : 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
0x000010 : 02 00 03 00 01 00 00 00 c0 83 04 08 34 00 00 00
0x000020 : e8 23 00 00 00 00 00 00 34 00 20 00 06 00 28 00
0x000030 : 1d 00 1a 00 06 00 00 00 34 00 00 00 34 80 04 08

 A file descriptor is not necessarily unique
 Not even in the same process

 It's possible to duplicate file descriptors
 Thus, the output to one file descriptor also goes to the other
 Input is similar

 stderr usually prints to the screen, even if stdout is being
redirected to a file

 What if you want stderr to get printed to that file as well?

 You can also redirect only stderr to a file

./program > output.txt

./program > output.txt 2>&1

./program 2> errors.log

 If you want a new file descriptor number that refers to an open file
descriptor, you can use the dup() function

 It's often useful to change an existing file descriptor to refer to
another stream, which you can do with dup2()

 Now all writes to stderrwill go to stdout

int fd = dup(1); // Makes a copy of stdout

dup2(1, 2);
// Makes 2 (stderr) a copy of 1 (stdout)

 Reading from and writing to files on a hard drive is expensive
 These operations are buffered so that one big read or write

happens instead of lots of little ones
 If another program is reading from a file you've written to, it reads

from the buffer, not the old file
 Even so, it is more efficient for your code to write larger

amounts of data in one pass
 Each system call has overhead

 To avoid having too many system calls, stdio uses this
second kind of buffering
 This is an advantage of stdio functions rather than using low-level
read() and write() directly

 The default buffer size is 8192 bytes
 The setvbuf(), setbuf(), and setbuffer() functions

let you specify your own buffer

 stdio output buffers are generally flushed (sent to the
system) when they hit a newline ('\n') or get full
 When debugging code that can crash, make sure you put a newline in

your printf(), otherwise you might not see the output before the
crash

 There is an fflush() function that can flush stdio buffers

fflush(stdout); // Flushes stdout
// Could be any FILE*
fflush(NULL); // Flushes all buffers

 You can build layers of I/O on top of other layers
 printf() is built on top of low level write() call

 The standard networking model is called the Open Systems
Interconnection Reference Model
 Also called the OSI model
 Or the 7 layer model

 There are many different
communication protocols

 The OSI reference model is an
idealized model of how different
parts of communication can be
abstracted into 7 layers

 Imagine that each layer is
talking to another parallel layer
called a peer on another
computer

 Only the physical layer is a real
connection between the two

Application

Presentation

Session

Transport

Network

Data Link

Physical

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems

Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption Unicode

5 Session Salty Sessions, sequencing, recovery TLS

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames,
transmission error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 There is where the rubber meets the road
 The actual protocols for exchanging bits as electronic signals

happen at the physical layer
 At this level are things like RJ45 jacks and rules for

interpreting voltages sent over copper
 Or light pulses over fiber

 Ethernet is the most widely used example of the data layer
 Machines at this layer are identified by a 48-bit Media Access

Control (MAC) address
 The Address Resolution Protocol (ARP) can be used for one

machine to ask another for its MAC address
 Try the arptables command in Linux

 Some routers allow a MAC address to be spoofed, but MAC
addresses are intended to be unique and unchanging for a
particular piece of hardware

 The most common network layer protocol is Internet Protocol
(IP)

 Each computer connected to the Internet should have a
unique IP address
 IPv4 is 32 bits written as four numbers from 0 – 255, separated by

dots
 IPv6 is 128 bits written as 8 groups of 4 hexadecimal digits

 We can use traceroute to see the path of hosts leading to
some IP address

 There are two popular possibilities for the transport layer
 Transmission Control Protocol (TCP) provides reliability
 Sequence numbers for out of order packets
 Retransmission for packets that never arrive

 User Datagram Protocol (UDP) is simpler
 Packets can arrive out of order or never show up
 Many online games use UDP because speed is more important

 This layer isn't a key part of the TCP/IP model
 The secure sessions provided by TLS can be considered the

session layer

 The presentation layer is often optional
 It specifies how the data should appear
 This layer is responsible for character encoding (ASCII, UTF-8,

etc.)
 MIME types are sometimes considered presentation layer

issues
 Encryption and decryption can happen here

 This is where the data is interpreted and used
 HTTP is an example of an application layer protocol
 A web browser takes the information delivered via HTTP and

renders it
 Code you write deals a great deal with the application layer

 The goal of the OSI model is to make lower layers transparent to upper ones

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

MAC IP UDP Payload

IP UDP Payload

UDP Payload

Payload

Payload

Payload

 Seven layers is a lot to remember
 Mnemonics have been developed to help

Application All All A Away

Presentation Pros People Powered-Down Pretzels

Session Search Seem System Salty

Transport Top To Transmits Throw

Network Notch Need No Not

Data Link Donut Data Data Dare

Physical Places Processing Packets Programmers

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as five layers:

Layer Action Responsibilities Protocols

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to segments Sequencing, reliability, error correction TCP or UDP

Internet Convert segments to packets Flow control, routing IP

Link Convert packets to frames
Point-to-point communication between
devices on the same network

Ethernet, Wi-Fi

Physical Transmit frames as bits Data communication

 More networking
 Sockets

 Work on Project 5
 Keep reading LPI chapters 13, 14, and 15

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Low Level File I/O
	Includes
	open()
	read()
	write()
	close()
	Example
	File descriptors revisited
	Duplicating descriptors on the command line
	dup() and dup2()
	I/O buffering in files
	Buffering in stdio
	Flushing a buffer
	Networking
	OSI seven layer model
	Protocols
	Layers
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer
	Presentation layer
	Application layer
	Transparency
	Mnemonics
	TCP/IP
	Upcoming
	Next time…
	Reminders

